Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability

Identifieur interne : 000001 ( Chine/Analysis ); précédent : 000000; suivant : 000002

Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability

Auteurs : RBID : Pascal:14-0084050

Descripteurs français

English descriptors

Abstract

New cathode interlayers based on a water soluble cationic polyacrylamide (C-PAM) with a viscosity-averaged molecular weight of 3 million were introduced as cathode interlayers in inverted solar cells. The neat C-PAM and 5% CsF doped C-PAM thin layers on ITO substrate could decrease the work-function of ITO and hence lead to suitable energy level alignments for efficient electron collection. Obvious enhancements of energy conversion efficiency as well as air-stability were found, in comparison to well-known ZnO interlayer based device. The possible factors involving deteriorations at two interfaces of ITO/interlayer and interlayer/active layer during more than 1 year storage under an ambient condition were analyzed. Our results suggest that the interlayer polymer with giant molecular size and numerous side groups of hydrophilic amide and quaternary ammonium would facilitate the formations of large and intimate single-molecular binding area with the ITO substrate and the upper active layer, and might afford more reliable interfacial contacts to resist possible moisture- and/or stress-induced delamination. Therefore, hydrophilic polymer with an ultra-high molecular weight would be an ideal cathode interlayer for efficient and air-stable inverted solar cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084050

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability</title>
<author>
<name>PING CAI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHU ZHONG</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Chemistry & Department of Physics, National University of Singapore</s1>
<s2>Singapore 117542</s2>
<s3>SGP</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name>XIAOFENG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JUNWU CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI CHEN</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Chemistry & Department of Physics, National University of Singapore</s1>
<s2>Singapore 117542</s2>
<s3>SGP</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name>FEI HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YUGUANG MA</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONG CAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084050</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084050 INIST</idno>
<idno type="RBID">Pascal:14-0084050</idno>
<idno type="wicri:Area/Main/Corpus">000098</idno>
<idno type="wicri:Area/Main/Repository">000004</idno>
<idno type="wicri:Area/Chine/Extraction">000001</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Alignment</term>
<term>Aqueous solution</term>
<term>Cathode</term>
<term>Comparative study</term>
<term>Conversion rate</term>
<term>Damaging</term>
<term>Degradation</term>
<term>Doped materials</term>
<term>Energetic efficiency</term>
<term>Energy conversion</term>
<term>Energy level</term>
<term>Indium oxide</term>
<term>Interfacial layer</term>
<term>Interlayers</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Polymer</term>
<term>Pulse amplitude modulation</term>
<term>Solar cell</term>
<term>Thin film</term>
<term>Tin addition</term>
<term>Viscosity</term>
<term>Work function</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Polymère</term>
<term>Cathode</term>
<term>Couche intermédiaire</term>
<term>Cellule solaire organique</term>
<term>Evaluation performance</term>
<term>Solution aqueuse</term>
<term>Modulation amplitude impulsion</term>
<term>Viscosité</term>
<term>Cellule solaire</term>
<term>Matériau dopé</term>
<term>Addition étain</term>
<term>Travail sortie</term>
<term>Niveau énergie</term>
<term>Alignement</term>
<term>Conversion énergie</term>
<term>Rendement énergétique</term>
<term>Taux conversion</term>
<term>Etude comparative</term>
<term>Endommagement</term>
<term>Dégradation</term>
<term>Couche active</term>
<term>Couche interfaciale</term>
<term>Couche mince</term>
<term>Oxyde d'indium</term>
<term>Oxyde de zinc</term>
<term>ITO</term>
<term>ZnO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
<term>Rendement énergétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">New cathode interlayers based on a water soluble cationic polyacrylamide (C-PAM) with a viscosity-averaged molecular weight of 3 million were introduced as cathode interlayers in inverted solar cells. The neat C-PAM and 5% CsF doped C-PAM thin layers on ITO substrate could decrease the work-function of ITO and hence lead to suitable energy level alignments for efficient electron collection. Obvious enhancements of energy conversion efficiency as well as air-stability were found, in comparison to well-known ZnO interlayer based device. The possible factors involving deteriorations at two interfaces of ITO/interlayer and interlayer/active layer during more than 1 year storage under an ambient condition were analyzed. Our results suggest that the interlayer polymer with giant molecular size and numerous side groups of hydrophilic amide and quaternary ammonium would facilitate the formations of large and intimate single-molecular binding area with the ITO substrate and the upper active layer, and might afford more reliable interfacial contacts to resist possible moisture- and/or stress-induced delamination. Therefore, hydrophilic polymer with an ultra-high molecular weight would be an ideal cathode interlayer for efficient and air-stable inverted solar cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>123</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PING CAI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHU ZHONG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XIAOFENG XU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JUNWU CHEN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WEI CHEN</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FEI HUANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>YUGUANG MA</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>YONG CAO</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry & Department of Physics, National University of Singapore</s1>
<s2>Singapore 117542</s2>
<s3>SGP</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>104-111</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000506140400130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>66 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084050</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>New cathode interlayers based on a water soluble cationic polyacrylamide (C-PAM) with a viscosity-averaged molecular weight of 3 million were introduced as cathode interlayers in inverted solar cells. The neat C-PAM and 5% CsF doped C-PAM thin layers on ITO substrate could decrease the work-function of ITO and hence lead to suitable energy level alignments for efficient electron collection. Obvious enhancements of energy conversion efficiency as well as air-stability were found, in comparison to well-known ZnO interlayer based device. The possible factors involving deteriorations at two interfaces of ITO/interlayer and interlayer/active layer during more than 1 year storage under an ambient condition were analyzed. Our results suggest that the interlayer polymer with giant molecular size and numerous side groups of hydrophilic amide and quaternary ammonium would facilitate the formations of large and intimate single-molecular binding area with the ITO substrate and the upper active layer, and might afford more reliable interfacial contacts to resist possible moisture- and/or stress-induced delamination. Therefore, hydrophilic polymer with an ultra-high molecular weight would be an ideal cathode interlayer for efficient and air-stable inverted solar cells.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche intermédiaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Interlayers</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Modulation amplitude impulsion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Pulse amplitude modulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Viscosité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Viscosity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Viscosidad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Travail sortie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Work function</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Función de trabajo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Niveau énergie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Energy level</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Nivel energía</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Alignement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Alignment</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Alineamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Rendement énergétique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Energetic efficiency</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Rendimiento energético</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Dégradation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Degradation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Degradación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Couche interfaciale</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Interfacial layer</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Capa interfacial</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>111</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000001 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000001 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:14-0084050
   |texte=   Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024